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Figure 1: Pipeline implemented by open-body-fit for computing a 3D skeleton from a video. The system takes 3D positions
from video and a skeleton specification as input. From the 3D positions, open-body-fit computes a 3D hierarchical skeletal
motion using inverse kinematics. From the skeleton, we can estimate a biomechanic skeleton using an anthropometricsmodel
of the body and a physics simulator. We demonstrate the system using Dart [Lee et al. 2018] and OpenSim [Delp et al. 2007].
The system outputs metrics, such as kinetic energy or symmetry.

ABSTRACT
We describe our open-source system, open-body-fit, for extracting
articulatory effort metrics for sign language from standard video.
The goal of this system is to provide insights into how factors
related to physical movements, such as principles of least effort
and ease of articulation, might affect how sign languages evolve or
differ across individuals. Our pipeline extracts poses from standard
video using a computer vision model and retargets these poses onto
a 3D physically-based skeleton. Our system computes metrics for
each frame of motion, such as kinematic energy and symmetry, and
includes scripts for analyzing them in R.
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1 INTRODUCTION
Wedescribe our open-source pipeline for extracting biomechanically-
motivated kinematic metrics from standard video. Although extract-
ing such metrics from videos has applications outside of linguistics,
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our goal is to use these metrics to better understand sign languages.
Particularly, we are interested in how factors related to physical
movements, such as principles of least effort and ease of articula-
tion, might affect how sign languages evolve time. For example,
signers might also reduce the number of repetitions in a sign, or cut
short the articulation of a sign, or replace translational symmetry
with reflective symmetry [Napoli et al. 2014]. Such shortcuts are
analogous to co-articulations, contractions, and acronyms used in
spoken English. Understanding the connection between articula-
tory effort and sign language helps us understand the extent that
signs change to become energy efficient as opposed to other factors,
such as whether signs change to make them easier to see while
focusing on the face.

Our approach is straightforward. We take 3D poses of the upper-
body extracted from video using a deep-learning model, Unipose+
[Artacho and Savakis 2021], and then fit a physically-based, hierar-
chical skeleton to it (Figure 1). Unipose+ estimates 3D positions for
the upper body. These positions are in a unit-less coordinate system
that can vary between video clips. For example, the same subject
may have different median-sized limbs dependent on their distance
from the camera. Thus, rather than use these coordinates directly,
we use them to drive the motion of a predetermined skeletal model,
whose size and joint hierarchy are defined apriori. The use of a
skeletal model also allows us to define axes of rotation, maintain
constant limb lengths, or define rotation limits.

We smooth the points from Unipose+ using a Gaussian filter
and then scale the points to fit our skeletal model. We solve for
the skeletal poses each frame using a standard inverse kinematics
approach which minimizes the distances between the skeleton’s
joints with the 3D points from Unipose+. To validate the fit, we
extract 2D poses from the video and then solve for a matrix 𝑃 that
projects our body model back onto the original video. The matrix 𝑃
corresponds to the model-view-projection matrix that best projects
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Figure 2: Kinematic energy. Left column shows results for
the sign “look with binoculars". Right column shows results
for the sign “go down the stairs". The bottom row shows time
series curves for each sign (in Joules, shownwith a log scale).

our skeleton to the image plane. We can then load the skeletal
model into a physical simulator, such as Dart or OpenSim.

Dart [Lee et al. 2018] is an open-source physics simulator toolkit
implemented in C++. In Dart, we define rigid bodies (as cuboids)
for each limb. The masses of each rigid body are estimated using an
anthropometrics model based on [Winter 2009] which outlines how
weight and center of mass are typically distributed across the body,
given a subject’s height and weight. Our system estimates velocities
and accelerations using 5-point differencing and directly integrates
Dart to output forces and torques using inverse dynamics.

OpenSim [Delp et al. 2007] is an open-source physics simulator
focused on body simulation and with built-in support for muscle
simulation. In this work, we load use MoBL-ARMS Dynamic Upper
Limb model [Saul et al. 2014] which defines muscles for the arms.
To integrate with OpenSim, our system defines a marker set file that
corresponds to our skeleton which OpenSim can load. The system
also outputs a .trc (Track Row Column) file containing the motion
of the joints. Using these, we can reproduce the motion from the
video and use OpenSim’s features to estimate forces, torques, and
muscle activations.

2 METRICS
In this work, we analyze a dataset consisting of speakers of Nicaraguan
sign language, recorded using standard video cameras. Here, we
use two example metrics to demonstrate the data we obtain using
open-body-fit.

2.1 Estimating Energy
We demonstrate our system by comparing the kinetic energy of two
signs: “look with binoculars" and “go down the stairs". The kinetic
energy is a function of the velocities and masses of each limb. The
kinetic energy is high when large limbs are moving quickly and
zero when none of the limbs are moving at all, as when the signer
is in a resting position.

Figure 3: Symmetry for the signs “window" and “down the
stairs". Window is a symmetry sign and has small pairwise
distances compared to the Down the Stairs.

2.2 Symmetry
Our system can also be used to estimate other useful metrics for
gesture analysis. Symmetry quantifies how similar the movements
of the left and right wrists are. Symmetry can refer to both in tandem
and mirrored movements. To compute it, we align the trajectories
of the left and right wrists using the Kabsch algorithm and then
compute the pairwise distances between them. To demonstrate the
approach, we consider two very different signs: “window" and “go
down the stairs" (Figure 3).

3 DISCUSSION
The ability to extract kinematic and dynamics metrics from a video
has many potential benefits for both understanding human move-
ment as well as for developing new models for recognition and
procedural animation of movement. Our on-going work on this
project is validating the data extracted using our computer vision
model as well as the metrics we estimate using physics.
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